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On a Random Difference Equation for Matrices -

And a Characterization of the Gamma Distribution.

by

Eric S. Tollar

ABSTRACT 
S

- The present paper considers the stochastic difference equation Y; MYInlQ

where %r and % are respectively random d x d matrices and random d-vectors, and ob-

tains some reasonable sufficient conditions on M; and % under which yn converges

in distribution. In addition. a particular model is examined when d 2, in which

the asymptotic independence of Y' and Y-, results in a characterization of the - ..

Gamma distribution.

"" '.... , F

, 2-.

/.

bj

°K

f" ,. ..... -.-. . .•. .A -1



p

1. INTRODUCTIOfl

In this -paper we study the limit distribution of the solution Y. of the p

difference equation

(1.1) Y -MY n Itn nin-i

where Hn are random d x d matrices, and Qn and Yn are d-vectors (whore d could be

considered infinite, unless otherwise stated). Throughout we take the sequence of

pairs (MU, Qn), n z 1, to be independent and identically distributed. Equation (1.1)

first came to our attention in a paper by Bernard, Shenton, and Uppuluri [1], in

which it was used as a model for the distribution of radioactive material in the

bone structure of humans. Since then, we have seen it arise in a variety of other S

contexts (see Soloman [9], and Cavalli-Sforza and Feldman [2), for examples).

The asymptotic behavior of (1.1) is examined in [10] by Vervaat in the special

case where d a 1. A variety of conditions are given for the convergence in distri-

bution of (1.1). In [S], Kesten establishes a reasonably general condition under

which (1.1) converges for the cases where d > 1. In [5], it is shown that if

(1.2') E-Clnll lI) +  ,-c....

then there is a constant a where

(1.3) a B lia 1/n IjM, ... 14111 a.s.,

n--,-

where for a d x d matrix N and a d-vector x, we define

(1.4) I1111 - max IxI, and
XI1 al
d

(.s) lI ( X- ;.
-i

We then have in [S] that if.--

-1- .
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1) (0 in (1.3), and(1.6)
i) there exists a B > 0 where EQI10 <-

then (1.1) converges in distribution.

The first objective of this paper is to establish criteria other than (1.6)
p

for the convergence of (1.1). While the conditions established will show that

(1.6ii) can be weakened, that is not the aim of this paper. Instead, the criteria

attempt to bypass what we perceive to be the major difficulty for applicability

of [53, that is, the extreme difficulty in the determination of a in (1.3).

In 171 and [10]. the respective authors investigate possible limiting dis-

tributions of (1.1) in the case when d = 1, and achieve some partial results in

clasifying the limiting distributions. The second objective of this paper is to

examine what criteria on the model (1.1) for d > 1 will yield a limit behavior in

which the various components of the vector Yn are asymptotically independent for

a special model in which only a one-way reapportioning of material is allowed. We

find that in most cases that non-trivial asymptotic independence is in general

achieved only if the linit distribution of the components is a gamma distribution.

As such' we arrive at a slight generalization of (Lukacs [6]).

2. CONVERGENCE OF THE DIFFERENCE EQUATION.

Prom (1.1), it is easy to see by iteration that

n
(2.1) Yn Mn .. M

which, for given Y has the same distribution as

0n

(2.2) RT i4 l ... iQi M ,1 ... %nY0.

L
&mois
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We shall establish that in the case when M1 . N-0 a.s. exponentially fast, under

weak conditions on Yand Q., (2.2) will converge almost surely, independent of the

distribution of Y 0' Then a variety of conditions which should be reasonably easy to

check in particular cases will be given which are sufficient to guarantee that

N1 ** Mnconverge to zero exponentially fast.

For convenience, for any matrix Nb and vector Y, we will use the typical notation

(2.3) (n. M(yj) Y.

Also, let us use the following notation, given matrices MV, ... M n and vector x;

(2.4) Mn) a .Ni

d
(2.5) lXI. I jxij,

We now establish the main theorem in this section, which describes sufficient

conditions for the almost sure convergence of (2.2).

THEOREM 2.1: If there is a 0 < X < I where either i) A- su Im, .(n)1) 0

a.s., E(lnIQI,,) < and Y01. -c aa.s., or iif 5U , (n)j) *0. a.s.,

E(ln(sUpj q1l)) c Dad suply0 il < - a.s., then Rconverges almost surely.

E~L The proofs that condition i) and condition ii) are sufficient for the almost

sure convergence of %are similar, and as such, it will only be established for

condition i).
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We will establish that R is a Gauchy sequence with respect to the infinity

nor*, almost surely. That is, that for all e > 0, there is an N where

(2.7) P( IR -Rm., < e. Ifm, n >N) > 1c

We will ignore the term M, ... MY0. since it is clearly negligible. Then assiuing

n I- a,

d
(2.8) IR~-~I 6 r .

--%I Jr, CT 10-)1

Let j-m~l 1ku 1 6jk)Ij I

P -.9) CN (W: n Su Lf C3

we have from (2.8) that

n d

CM U+1. k-I

d d
+ I- (W) I I ( I Ji '-')Iqjk

Ca i-IL k-1 iml~~"

where IA(x) is the indicator function of a set A.

Thus, from (2.10), we have that

(2.11) PCIR%-R.t. toa some nmon N)

JuN41 k=1i ~

P(., i PC Q IA' 4 .- C ).
MY j~*

J-N~I
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By lemma 2.2, to be presented later, we have that A'llQil" converges almost
Jal

surely if and only if E(InIQIj,) c -. From condition i) we have that there exists

a X, 0<0<0, such that we have that for sufficiently large N, P(Cn) > l-c/2 for all

n > N. Thus, it is easy to see from (2.11) that for sufficiently large N,

(2.12) P(I %-RaI. >e, some n' a > N) < c/2 + e/2 = e,

which establishes the theorem. 0

In [10], Verwaat establishes the lemma cited above (which is actually more

general than the current requirements), which we now state for the sake of complete-

ness. L

LE?44& 2.2: For (Xi, {Y }, i.i.d. random variables, where - E (inil) < o, the
S n n + ....,.then
J ( X)Y1 converges a.s. if and only if E(lnIY1I) < -.

i~l j~l "L..

We will now establish several criteria which are sufficient for the exponen-

tially fast convergence of M1M2 ... Mn. To do this, we will appeal to a general

leuma about functions on the matrices.

J j U: if (A.) is a sequence of i.i.d. random matrice, and f is some function

such that f(A1A) : f(Ai) f(A.) and E(in f(A1))< 0, then there is a A, O<X<l where
n n

P(f( IAi) > i.o.) =0.
i-i

PROOF. By assumption, we have that

n n n fA-

SA f( A l In( R f(A) In f(A.

Thus, if we define 6 a - in f(A), we have for any y where O<y<6 that

(2.14) P( II n f(Ai) , -Y i.o.) a 0.

Ji

As such, from (2.13) we have that
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(2.IS) P(f( it A) e'yi.o.) S P( in f(Ai ) > -Yn i.o.) - .

We get that for all A > e'. the assertion is true. 0

Now we establish the first sufficient criteria for the convergence of Rn -

which should be reasonably easy to verify in certain cases.

fl3Q3jj1L if E In (01M111.) < 0, E tn(Ql.) < and IY", - a.s., then Rn

converges almost surely.

O By condition i) of Theorem 2.1, we need only establish that

,-n $UP m.(n)i 1 O, a.s. This follows quickly from Lemnma 2.2 by noting
SjtSd Ii- "I Jt

that for all x where IBxI. * 0,

IABxI.
(2.16) IABxl. - lIxl. : IIAII.l6xl.,

IBxI, 
L

where the inequality follows from the definition of theorem (2.6). Thus we have that

lIABIl. I IAil. II.I1.. As such, from the assumptions and lemma 2.2 we have that
n

(2.17) P(l H Mill. >" i.o.) o.a

This yields that for X 4 A 1, we have that
Ii

(2.18) A,"l II AMill, o0, a.s.

As can be easily established from (2.6), we have that

(2.19) II A Mill. sp ( I itm 1  ,

il thled i a

* and the theorem is completed. 03.;il

I°o +'>1o°,
* : *- . *. * . . . o°
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While the condition E gnhlM ll. < 0 is not as formidable a condition to check

as at first it appears, since formula (2.19) gives some hope of verifying

E InJI I1. < 0, nonetheless it is perhaps too difficult for certain models. The

following theorem gives a simpler condition to check. .

Using the matrix notation EIMI - (Elmi 1), we have the following theorem.

:lglL.,, If d < -.IllEMll II. < 1, E Ln(Il!Q.) < and IYOI. < *, a.s., . .
S.

then Rn converses almost surelZ.

RBMF; Once again, by condition i) of theorem 2.1, we need only establish that for
d]

o < X < 1, X sup (nli I) 0, a.s. Since IIEIM()' Ill < 1, we can choose a

X and where lIElMI)l 11. < X1 < X < 1. Prom (2.16), we have that

n 11U_.

(2.20) II l El?4l 11, : IlElB kl I I n
k-l k=l

Also, we have from the independence of the matrices

d d
(2.21) Elmi (2) . El k-I ,i ,kIm2.,,l2IkIjEl

kul lik ik ,E Ikl 'm

which alongwith (2.19) and (2.20) yields

nn
(2.22) I lieIM... M1 I 1. II Elfkl 1. < Xn

kul

Also, we have for X > A that

(2.23) P( oXn sup mi
num+l l J~gd s nupl I=1 i n ),

, x'%'lE sup ( j a I)

Since 
n 

"

Lo
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(2.24) Bsupd(. I Im I JE ~I mj( 1] 9 dl sup I i) I

Ir.~s in Jl i--3'SJdlal '

d 1M %.1 "

we get from (2.23) that
Jm

, (2.25) F -nf(n)I > e S X 'e'dI -Ejl ... M111.
aw,.l lisJ:d lil Jn=m+l

S cl[ AI a de-'! [1 L

where the second inequality follows from (2.22).

As such, for a sufficiently large, we have
k

(2.26) p u A sup 'm(nj >

which completes the proof.

We now introduce another functional on matrices which is very similar to the

spectral radius, first introduced by Dobrushin [33 in the case of stochastic

matrices. For any dxd matrix P (Pij), let us define an auxiliary matrix
=(pij) by

1 if iul, J=l

0 if i >'I, j=l
(2.27) P" d

I-iP j- if i-l, J > I

Pi~j-Iif i > I, 1 .::

Then we define our functional 6(P) by

-d+l

(2.28) 8(P). sup I f [i" jk •
l i,k~d~l Ijul ..".J

LEMMA 2.6: For any dxd matrices P, Q, where

sup [ pi <', sup I qij < 6 (pQ) < 8(P) 6(Q).
lSJ d ,illJ*d l



7I

9

PROF: The functional 8 is very similar to that of Dobrushin (3]. An examination

of the proof that for stochastic matrices P',Q', we-have 6(PtQI) : S(P')f(Q'),

(see, Isaacson and Madsen [4), yields that the crucial properties are

d. 1
i) .1 .=l, for all i

jul(2.29) d I d+1ii) l q dl (ji qjk ) all i, k.

u l itj ('iji ~jk)

Since both are satisfied by the definition of 0• , the proof is complete. 0

It should be noted that 6(-) and 11-11. are very similar. In fact, if P is a

non-negative matrix, then it is easy to show that a(P) = 1iPI1.. However, if P is L

allowed to have negative values, it is possible that S(P) < IIPII. or IIII. < 6(P).

Because of this similarity in behavior, it is easy to see that a theorem similar to ."

theorem 2.4 can be established for 6( 1) by methods identical to those used in
d

theorem 2.4, (we need only notice that from (2.28) we have 6(P) z sup (j +)p 4.),

d d lisd Jid d o

6(P) k sup ( p), which yields that 26(P) 2 sup ( pij)). As such, we
lSisdl lid j1l.

* state without proof the following theorem.

Theorem 2.7. If E in(M 1 ) < O, E ln(I(4L) < and lYol. <"a.s., then n

converges almost surely.

. It should be noted that theorems 2.4, 2.S, and 2.7 were applications of con-

dition i) of theorem 2.1. It can be easily seen that by considering 1 , the trans-

pose of N, that theorems similar to 2.4, 2.5 and 2.7 can be established using con-

- dition ii) and virtually identical proofs to the theorems already established in-

*. stead. However, both the statements and proofs of these theorems will be omitted in .'-

this paper.

- . . . . . . .. .
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3. LIMITING INMPENMNCE FOR A PARTICULAR RANDO DIFFEW E NODMLJE

In [7] and [10]. the respective authors investigate possible limiting dis-

tributions of (1.1) for the case of d-1, and achieve some partial results in clas-

sifying possible limiting distributions. For d=2, we will examine for a special mo-

del the conditions under which the two components are asymptotically independent.

The model to be considered is the difference equation(lV .l..n-l + (I
(3.1) -n 2 n-l

where {V,WQn) is an i.i.d. sequence, and V ,wn n are independent of each other

for all n. This represents a one-way flow storage model, in which at step n new

material is added to component one via Qn' material is transferred from component

one to component two via 1-Vn , and material is lost from the system from component

two via l-Wn

For the model given in (3.1), if we let X , ' and let
's it"

(s,t) E(e 1 2

(3.2) isQ-

Xs) B e

then it is easy to verify from (3.1) that

(3.3) O(st) - 4(s)E(SV1  t(1-Vl), twl).

* Since Y and Y are independent if and only if O(st) = *(s,O) ¢(O,.), we have

from (3.3) that

.. (3.4) *(s,t) - 4(s) E*(sV1 + t(1-V 1 ),O) E (),tW 1

Aa
- Also fr'om (3.3) it can also be s~vn that



* (3.S) *(s~t) u *(s) Z. (sV110) E (t(l-V )tW,)

a l(s) Ef(sV1,O) Ef(t(1-V,),O) E0(O,t0 1).

If welet

(3.6) A (s: li(s) =0 or Ef(0,sf) )

* and if Ac is dense, then by equating (3.4) and (3.5) one can see that for all

(s,t) c A xAC that

(3.7) El9V1 I t(l-Vlb) = EO(sV1,0) Ef(t(l-V 1,).

Then, by continuity of characteristic functions, we get that (3.7) holds for all

(s,t) eR x R. Thus, under conditions sufficient to guarantee that Ac is dense, we

get from (3.7) that Y1, Y 2 are independent if and only if for V, independent of

Yl, VY, and (l-V )Y1 are independent. L

* In the following, we will say {0 if x 0
(3.8) x - rC.,,o)if P(x x) r8 1 ~y

fo A(Ay e' dy if x 0,

and t i f x 0 or x a 1
(3.9) X -B(a,8)if PCX :9 x)

jX (I- 01ldy if O<XIcc.
0

The main result of the section is the following theorem.

THEOREM 3.1: For model (3.1), if V ad Y, are independent then V1Y1 and

*(l-V 1)y I are indepedent if and only if one of the following siX conditions are

true:
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1) Y, 02

2) y1  C, , d

3) V1  0

4) V1  B1

S) Y, r(Orj.0), Vi B (u&,B)

* 6) -Y, rcX'MO), V1  B(caB)

To establish theorem 3.1, we will first establish the following leuma and

intemediate theorem.

IINLL.L Let U,V be Indepedent random variables, where 11 > N 0. Then U(U-Wf 1

and U W are independnt ifandonly if c, Wd, c d 0.

UML: It is clear there must be a constant e where -

(3.10) P(U 0) * ( A6

* If not, thenwe could find ab where P(U Ab) >O.'P(W >b)> 0, but

* P(U :9 b, W > b) =0,-a contradiction.

Lbt

(311 - sup b:P(Ukb-1)

* Then0W N:sb 2 : b3 U.

* Since U - zb3 -b W i b we have that

-l b
* (312) U(U - W)



Also, it is clear P(U -W cb3  b b2 >'c 0, for all 1 e 0.

Since U(U - P)4, U - are Independent, we have that

-l -l -l --

(3.13) P(U(U - W) b 3(b 3-b2 g) > ((U- b 3(b 3-b 2 6) 'IU W b 3-b 2.

And U - W -cb -b *e implies

(3.14) U <bee and Wv-b2 -C.

As such, we have that U - N 'b -b +e implies

(3.lS)' U(U -V)- I + b 2-C b 3

1 32 3Thus P(U(U -W)- > U-W<b- 0 1frale>0
32

As such, from (3.13), we get-

-1 3.
* (3.16) P(U(U-V) -al3 1

32

* Combining (3.12) and (3.16), we get P(U(U - ) -1 b) *

3 2

which in turn implies U b V3  V b b2.

Using this lemma, we can establish the next intermediate theorem.

MURN.".thenV Y an (I-,)Y ar
QMM..I1  Y a: 0, and if V1 -y1 aeindependentlte 1 1 ad(-~Y r

independent if and only if one of the five conditions below are true:

2) V 0,

3) V1 3 1,

4) Y 1  c CV 1 Ed,

5) V1 r(o,es), v- B(sPo) .
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IP.F: The sufficiency is obvious, so we need only establish the necessity of the

conditions. For convenience, let

(3.15) XV VY, Z (l-Vd)Y

Further, let
A, (Y "°) (x 0, Z 0)"
A2 (Y1 

> °  V
I  o (X < 0 Z >o 

.
A3 u y1 

> 0, V1 ( 0) = {X 0 0, Z 0

(3.16) A > 0, 0 V 1  1} (X > 0, Z > 0
- As"~~~ (Yl • ' v . ;.(~ ,z }

AS a (YI ) 0, V1  1) a {X • 0, Z a 01

6A > 1 ' OVI 1 ) a(XO>0Z <.-

Also, for the random variables V,, YI, X, Z, we define, respectively, the

variable VA, YA' XA, ZA for any arbitrary set A as the restriction of the variable

to the set A. That is, the distribution of variable VA is given by

(3.17) P(VA s x) - [P(VCA)] " P(V S x, VeA)

with the othor variables defined identically.

A As can be easily established, if V1  and Y1 are independent, than VAi and

- A. are also independent for all i. Similarly, if X and Z are independent then so

• are X and Z for all i.
A* A
To prove the theorem, we examine three cases,

1) P(YI=0) = 1 2) P(YI=0) < 1, P(0<VI<1) > 0 and 3) P(Y D0) < 1, P(O<VI<I) * 0

CASE 1: P(YS0) a,.

In this case, we have nothing to prove, this being condition 1) of the theorem.

...........
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CASE II: P(YI-0) < 1, P(0<VI<l) > 0.I!

In this case, P(A4) a P(YI>O). P(OVI<l) > 0.

Clearly XA >0, Z A > 0,and X Aand Z Aare Independent. Also VY A ar
4 4 A4  A4  A4 4

independent, and as can be seen from (3.15), we have

XA+ *A XA (XA A ~AA A4  4- 4 4 4

Thus from Lukacs characterization of the gama distribution (see [61), we have that

(3.18) -rom, zXA4X- r(x,) 

Also, we have that

(3A9 A4  A4

Since Y{01 YA for i 1 1 (from the independence of Y and VI), we have

for any i s I where P(A.) > 0, that

(3.20) Y Ai-Y A4fori1 0l.

By similar arguments, we can also establish that for any i where P(A.) ' 0,
we must have X-- fori>4,XA I XA4 frt>,-"-

i 4''

(3.21)
Z - Z for 141i4.

Ai A4

*Let us assum P(A2) > 0. Then by letting

* (3.22) U Z ,V--X
A,

we have that U > W > 0. As can be easily established, U, N are independent, and

W(U-) U-W are independent. Also, since U-W) Uu-W)" -1, we can apply

Lmma 3.2, yielding Z A c, X = -d. But since ZA r(x,), and from (3.21) we
A2 2 A4

have ZA ZA , we have a contradiction which yields that P(A2) 0.

If PA 6) > 0, we can generate by similar methods a contradiction for the

distribution of XA , so P(A6) a 0. If P(A3) • 0, we have XA a 0, so YA ZA
3 A3 A3
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but from (3.20) and (3.21), we have YA 3 r( o) and ZA r(,a+B) yielding by. con-

tradiction that P(A3) - 0. Similarly, we can show that P(O) = 0, yielding that

P(O<Vil) - 1. Thus we have that, letting P1  P(Y1 
• 0). that

(3.23) P(X(x, Zsz)

a P1 I(XzO, Z=O) * (l-p,)r(x,q)(x) r(xAo)(z)

Since P(X=O)=P(ZmO) a P(X=O, Z=O) a p,, from independence of X and Z, we have that

P1 a p1
2 which yields that p1  0 since p, < 1. This yields condition 5) of the

theorem.

CASE III: P(Yl=O) < 1, P(O<VI<l) * 0.

Since P(Q<Vcl) 0 0, we have P(X>0, Z>O) 0 0. Thus, either P(X>O) 0 0, or

P(Z>0) 0. Assume P(Z>0) 0. Then P(V0.O) 1. In addition, assume that

p(Vl<O) >0, so e hav wP(A) >0, and by applying Le 3.2 to XA, Z , wet 

Z ,c, X. -d,cd . Thus " Y Z +X c-d0. ifP(V0) .o also"A2 X 2A2 A2 A 21

wu have P(A 0. By (3.20) and (3.21), we get that YA - Y' = c - d, and

ZA Z = c. But we must have Z' Y "A -which gives a contradiction. Thus, ,
3 A2  A3 3

if P(V1 < 0) > 0, then P(V1  0 0) = 0 which yields that P(V1 < 0) - 1.

Thus, we have for P(Y 1  0) P1
P(XO, ZO) a Pl

(3.24)
P(X--d, Z=-c) a (l-pl)

which clearly contradicts the independence of X and Z unless p1 , 0 or p 1.

Thus we have X and Z are degenerate, which yields condition 4).

If we assume instead that P(VI O) > 0 in addition to P(Z>0) w 0, a Contra-

diction similar to the one above will show that P(V uO) a 1, which is condition 2).
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If we assime that P(X>O) 0 0, arguments identical to those above will show

that P(VIu) I 1 or P(VI21) = 1, which yield, respectively, condition 4) or con-

dition 3). 0

We are now ready to establish the main theorem of this section.

fl~~j4~If V1 , Y, are not both degenerate, then V1 , Y, independent and V1Y1

and (1-VI)Y I are independent if and only if one of the five conditions below are

true:

1) Y1 O,

2) V 1  0,

3) V1  1,

4) YI r(,ca4), v1  B(ct,B)

s) -Y~ r(x,e.0), vI ~ B1  ,. .-

RO Again the sufficiency is obvious, so we need only establish the necessity of

the conditions. If we have either P(YIaO) a 1, or P(YlSO) =l, then by theorem

3.3 we have that one of the S conditions must hold (where the new condition,

condition 5) follow when P(YI<O) =I). Thus from now on we will assume

P(YI1 O) > 0, P(Y I>O) > O.

In addition to the sets A, to A6 defined in theorem 3.3, we define the sets

A7  (YI<O, VI <O) {x>' Z<O, X+Z<O}.

A8 = (YI<O, VI=O1 (X=O, Z<O}

(3.25) A9 - (Y <O, OV <1) - (XD, Z<O)

AO (Y <O, V1io) = (X<O, Z=O)

All (Y1
<O' VlI'l) (X<O, Z>O, X+Z<O),
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and we redefine

[A 2. (x<o, Z>o, X+Z) :!:)!
(3.26) A6  {X•0, Z<0,A6 ("X' Z<c1 X+Z)

Note that while for all i, A, can be expressed as Ai = YIeA, V IB} (for some

borel sets A, B) the sets A2 , A6 , A7 , A,,, cannot be expressed as sets of the

form MliA, ZeB).

Let us assume in addition to P(YI<O) >, PCYI'>O) 2 0, that P(OV<l) ' 0

(this assumption will be shown to yield a contradiction later).

Thus we have P(A4) 0 , P(A9 ) > 0. By appealing to Lukacs characterization

as in Theorem 3.3, we get

P

(3. xA 4 r(A I'l). ZA4 m(1 1 01, YA4  r(As 1e01)

(3.27) j r.2 ,- ., -4 yA Ct +.

By arguments similar to those used for (3.20) and (3.21), we have that if

P(A6UA7) > 0, P(A2UA,,) > 0, then

X XA UA ' "Z Au 7  -ralsal) x r (X2 02)
(3.29) XA uAI z A n  r(ozo 2) x r(olol).

*" Since P(A6 UA7 ) > 0, assume that P(A6) 1 0. Thus we get for x0 > 0, y0' < 0

that Il Il e- 1X *2 .2  2 "A1  x A2  (-Z) 2"e 2dxdz ..

(3.29) P(XA S xO ZA 5 z0 ) 2 j- z (Z x
6 6 A rC ms)P( 1

*where As ((x,z) :xx , vzo, x4Vzr0}.

Also, by arguments similar to those used for (3.20) and (3.21), we have that L

(3.29) Y xA z -rx, a..
A6  XA A6

6 6
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Thus, by transformation of variables in (3.28), we get that

1 * 11"1  r(csl) A2 2 2.

(3.30) A Y r(gr(0 A6) o(yw) w d

By examining the behavior of the right hand side of (3.30) and the left hand side

of (3.30) (particularly as y approaches 0), we get that equality is impossible

for a ' 0, 0 > 0. Thus, we have that P(A6) a 0. Similarly, we can establish

that P( 7 ) - 0. Thus P(X > 0, Z c 0) = P(A6UA7) a 0. However, since we have

assumed that P(Y1 '0) ' 0, P(Y 1 0) 0, and P(O < VI < 1) ; 0, we get from the

definition of X and Z (see (3.15)), that P(X > 0) > 0, P(Z - 0) >0. This yields

a contradiction in the assumption P(0 < V1 < 1) > 0. Thus, we conclude that

P('O < V, - 1) a 0, and we have that P(X > 0, Z > 0) a P(X < O, Z < 0) = 0.

From this, we can quickly deduce the rest of the criteria. Since

P(Yl • 0) > 0, and P(YI c 0) > 0, then the assumption that P(V1 < 0) yields from

(3.15) that P(X , O) > 0, P(Z ; 0) > 0. Independence of X and Z yields that

P(X < 0, Z < 0) > 0, which is a contradiction. Thus, P(VI1 < 0) a 0. In a similar

manner, P(V 1 > 1) a 0. Thus P(VI = 0) + P(VI = 1) = 1. If P(V = 0) > 0,

P(V 1) > 0, we again can show from (3.1S) that P(X > 0) > 0, P(Z > 0) ' 0,

which again contradicts P(X > 0, Z 0 0) = 0. Thus we have either P(V1 a 0) a O,

P(V1 = 1) a 1 (condition 3) or P(V1 u 0) = 1, P(V1  I) a 0 (condition 2). 0

To relate Theorem 3.4' to the asymptotic independence of Y and Yin "

we only sed to observe as rmarked after (3.7) that for any condition sufficient

to guarantee the density of Ac (see (3.6)), Y1 and Y are independent if and only

if for V1, Y1 independent, VY1 and (I-V 1 )YI are also independent. As such, for

A dense, Theorem "3.4 gives the necessary and sufficient condition for

asymptotic independence. The most reasonable and realistic condition on

(Q%,Vn,Wl) for Theorem 3.4 to be applicable are given in the following

corollary.
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COROLLARY 3.5 if k 0, 0S s 1, Wn 2 0 then Y Inand Y

asymptotically indevndent if and only if 0 has a Gama distrIbution and

has a Beta distribution, or one of the four trivial conditions of Theorem 3.3

are met by n d

The proof follows imoediately from Theorem 3.4 and the fact that the

characteristic functions of non-negative random variables have dense support

(see Smith (83).

Clearly, other restrictions to Qn Vn, and Wn will yield that the only case

of asymptotic independence of ¥1,n and Y2,n are when % has a Gama distribution

and V has a Beta distribution. However, the more interesting question of a

characterization of the distributions of an, n and that result in Y,n and

Y2,n being asymptotically independent appears to be an open question.

2,no

-f"i

• -I
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